

Real-Time DPM Measurement as a Maintenance Tool: The Australian Experience

@ Mining Diesel Emissions Council Conference2010 October 5-9th, Toronto

Presentation:

Peter Anyon PM-Tech / MAHA

Developing a DPM Management Strategy

Research / Evaluation

Government Responses

Pre-Program DPM Emission Profiles

Test Equipment

Implementation

Program Effectiveness

Summary & Conclusions

Research

- An intensive testing and evaluation study undertaken by The Australian Coal Industry's Research Program (ACARP) and coordinated by the New South Wales Department of Primary Industry's Mines Technical Services Division
 - in conjunction with SIMTARS, NIOSH
 - supported by external consultants and industry
 - over the period 2000~2002
- Aim: "...to find one or more methods for measuring diesel particulate matter (DPM) in the raw exhaust of diesel-powered mining equipment at underground coal mines".

Test Program Structure

Dynamometer Testing

- of candidate instrument performance and comparison
- Evaluation of suitability for DPM testing under closely controlled conditions
- 3 engines (Cat 3306, Kia 4100, Cat 3126)
- 4 instruments (three laser light-scattering, one pressure drop)
- tested over 8 steady state and two transient modes
- results correlated with traditional gravimetric filter method

Test Program Structure

Field Testing

- five New South Wales mines selected as test sites
- where feasible, multiple instruments were operated in parallel
- mixture of steady-state and transient tests used
- tests included free acceleration, idle and acceleration/power modes with torque converter engaged

Key Project Outcomes

Stall Test

 60-second idle/full power/idle test with drive engaged, using the torque converter as a dynamometer.

Key Project Outcomes

- Free Acceleration Test
 - for plant with no torque converter, three full-throttle accelerations (gear in neutral) to governed speed, spaced over 60 seconds

Initial Government Response (Summary)

Primary Guidelines

- ambient DPM exposure limit 0.1mg/m3 elemental carbon (EC). EC to be calculated as equivalent to 0.5 x total suspended diesel particle mass
- all new engines to have "signature" test before entering service
- all existing engines to be maintained to "best" emissions level then have "signature" test
- periodic (max 4 week intervals) testing to monitor condition and trigger rectification if DPM exceeds limit (initially 30% > than signature, soon to be 20%)
- records to be maintained of all test results for individual vehicles/plant

Pre-Program DPM Emission Profiles

Preliminary fleet testing was performed at several mines to characterize the emission profiles of vehicles.

Results of this testing showed considerable similarities

 most engines had low - moderate emissions, with a few very high emitters peaking the curve

DPM Emission Distribution: Initial Survey (Example 1)

DPM Emission Distribution: Initial Survey (Example 2)

Correlations, Test Cycle vs On-Task Operation

On-Vehicle Testing

On-Board Real Time Recording

Custom software (available with instrument) stores and charts continuous DPM Concentration vs Time for analysis and correlation studies

Correlation, Example 1

		Static Test		Min	Max	Average	
				6.7	194	58.1	
Average =	58.16394						
		Engine hours		6758			
		Last 1000 service		0			

Correlation, Example 2

Correlation, Example 3

Implementation

Test Equipment

Third generation laser light scattering (LLSP)

is now the measuring method of

choice in Australia

- Incorporates several years of experience and industry feedback
- Simple one-button operation
- Auto-zero before every test
- NiMH Battery, >2hrs testing
- Remote control for single person testing
- On-screen and flashing LED operator prompts
- Automatic test result generation
- Simple field calibration and service

MPM-4M (4th Generation)

Peter Anyon - 06 October 2010 - All use and right of disposition such as copying and right of passing on this presentation remain with MAHA Maschinenbau Haldenwang GmbH & Co.. KG. and PM-Tech (a division of MicroCAD Australia Pty Ltd)

Stall Test DPM Results (Typical)

Test Result Screen (Example)

Second-by-second test data can also be exported directly to PC via RS232/USB

Testing Program

- Every vehicle and item of plant operating underground is tested (minimum) monthly. Most mines test every 2 weeks or weekly.
- DPM result >20% above "signature" level for that vehicle mandates maintenance/repair before returning underground.
- Absolute DPM limits are also applied (next slide)
- A standardized diagnostic tree is generally used to identify and rectify high emissions, based on cost/frequency analysis (eg, start with air filter and work down from there)

DPM Limit Progression (Stall Test)

Limit DPM Concentration (mg/m3) by Year

Program Effectiveness (Example)

Average DPM Reduction = 60%

Benefits (Health & Economic)

- Program minimizes DPM exposure risk to underground personnel
- Measured Maintenance also optimizes fuel consumption and has potential to improve engine reliability.
- By maintaining "On-Condition", wastage costs due to unnecessary maintenance are avoided.
- Assigning specific cubic flow requirements to individual vehicles allows optimization of equipment deployment and ventilation flows, without exceeding DPM exposure levels

Summary

- DPM measurement is now broadly accepted as a necessary and integral part of mine equipment and ventilation management.
- Test cycles and test equipment have proved to be practical and effective
- Continuing dialogue and cooperation between and within industry and government has been essential for effective program implementation

Last Word

Measured Maintenance

"IF YOU CAN'T MEASURE IT YOU CAN'T FIX IT"