+ Methods of Estimating Mobile Equipment Heat Loads for Battery Power

Sudbury - October 17, 2016

Driver

- Looking at non-diesel equipment
- Deeper mining / need savings for NPV
- Ventilation and cooling system design
 - No longer have 100 cfm/hp to define flow
 - Heat from equipment is critical for heat analysis

Parameter of Interest

- Sustained heat output while equipment is working
- Input for modeling
- Understand how much cooler workings will be

Sensible Heat from Battery Equipment

Battery charger & charging losses

- Battery heat during discharge
- Electric motors & electronics
- Mechanical & tire losses
 - At the work site

Methods

- Factor on Engine Duty (Gundersen)
- Engine Swap (US mines study)
- Empirical Field Measurements (Halim)
- Conversion Energy Consumption from Diesel
- First Principles Energy Analysis

Factor on Engine Duty

- Primitive estimation
- Peak diesel engine power rating
- Assume same electric motor power
- Consider that value the heat number
 - 145 kW diesel LHD → 145 kW motor
 - 90% efficient motor → 161 kW heat
- Simplistic, ignores duty factor

Engine Swap

- Take diesel fleet or machine
- Assume engine replaced with motor
- Take 2.8 times less heat and apply as all-sensible
- Does consider the importance of duty factor

Empirical – Field Measurements

- Publication by Halim et al from Northparkes
- Took heat measurements
 - Tether LHDs
- Concluded heat similar to motor rating
- Question about other heat such as broken rock
- Doesn't seem to align with energy balance
- Did not include duty factor

Conversion - Energy Consumption from Diesel

- Example from recent study for LHDs
- Good for empirical study for existing operations
 - Look at actual fuel consumption
 - Convert to electric heat output
 - Difference represents reduction in mine heat/cooling

First Principles Energy Analysis

- Considers heat from each component
- Energy efficiency
- Still need to apply duty factors
- Valuable for diesel/electric comparison
- Can account for specific details:
 - Replacement of hydraulics
 - Driveline / power transmission
 - Battery type (discharge losses)

Heat Losses from Diesel and Battery

equipment

Comparison – 145 kW LHD

Method	Indicated Sensible Heat
Factor on engine duty :	161 kW
Engine Swap	145 kW
Empirical – field measurements	147 kW
Conversion from energy consumption from diesel	97 kW
First principles energy analysis	48 kW

Heat Comparison

- Up to 3x difference
- Similarities in first three
 - Sensible from energy balance only if duty factor of 100%

Findings & Recommendation

- Uncertainty remains
- Sensitivities
 - Duty factor
 - Haulage gradient & travel distance
 - Intensity of activity
 - Machine configuration
- Select method carefully for your project
- More testing

+ Thank you.

