

DPM Reduction at the Stillwater Mine

Stillwater's DPM History

- The Stillwater Mine tested many technologies during the Isozone Studies (2003 & 2004).
 - DPF's
 - o Active,
 - o Passive,
 - o Disposable Filter Elements
 - Alternative fuels (bio-diesel, ULS, and fuel emulsions)
 - Results found in the NIOSH Isozone Publications
- Integrated Approach to reduce DPM exposure.
 - Ventilation Upgrades
 - Engine Upgrades
 - Emissions-based Maintenance
 - Exhaust Treatments
 - Bio-Diesel Blends
 - Administrative Controls
 - Reduce/Replace diesel-powered mining techniques

Improved Ventilation

Ventilation design to increase dilution

- Replaced series ventilation paths with series/parallel ventilation paths
 - 600k to 1.1M SCFM Completed by Q2-02
 - 1.1M to 1.4M SCFM Completed March 2008
 - Auxiliary fan standard to provide engineered duct-tofan fit for better efficiencies
- Improvements in main drifts (Footwall Laterals)

Did not get us where we wanted to be in production areas

Electronic Engine Controls

The Stillwater Mine has 330+ pieces of diesel equipment

- Currently, the Stillwater Mine has the following electronic controls (about 1/3 of entire diesel equipment):
 - 85 Electronic Engines (32 are Tier 3)
 - 39 Electronic Governors
- Electronic engines are not available for the complete underground fleet and total replacement cost prohibitive
- Replace properly running Tier 1 or 2 engines with Tier 3 only as part of normal replacement at end of life or if they have high vent rate requirements.
- Electronic controls improve emissions, but don't solve DPM.
 - Will Tier 4 engines will cure DPM?

Emissions-Based Maintenance

- Emissions-based maintenance keeps engines operating in best tune to keep emissions at their best.
 - Emissions testing during each Planned Maintenance
 - EECOM for gas analysis
 - Smoke Dot for PM indicator
 - Train mechanics, Six System Engine Maintenance
- Electronic controls & emissions-based maintenance enhance DPM reduction techniques.
 - All Cummins & Deutz engines
 - Properly maintained engine systems reduce DPM and keep other gaseous emissions in check,
 - Allow other treatments to work to reduce DPM

Exhaust Treatments

Ventilation & electronic controls did not reduce DPM to desired levels.

- Stillwater placed greater emphasis on exhaust treatments as a means to reduce DPM
- Properly tuned engines will better support exhaust treatments.

Exhaust Treatment Strategy

What Strategy for exhaust treatment application?

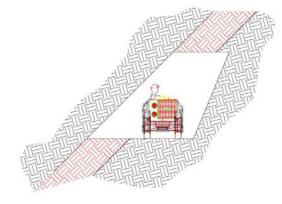
- Horsepower & Utilization determines big vs. small DPM producers
 - Group 1 (Muckhaul) Larger Hp, medium to high utilization and small quantity.
 - Group 2 (LHD's) Medium to large Hp with medium utilization and unknown duty cycles.
 - Group 3 (Utility Fleets) Low to medium Hp & low to high utilization and unknown duty cycles.
- Duty Cycles from thermal profiles determine exhaust treatment application.
 - Fit & forget is easiest (& best) to use.
 - Stay conservative good surprises.
 - Haulage equipment probably easiest to apply.
 - Medium duty cycle equipment may accept passive DPF's
 - Hydrostatic drives pleasant surprise.
 - Low duty cycle Flow Through Filters or active DPF's.

Exhaust Treatments First Group Attacked

Muckhaul Fleet - Trucks & Locomotives

- Larger Hp, high duty cycle & low quantity
- Largest percentage of electronic controls (for Stillwater)
- The "perfect" application for passive DPF's
 - Catalyzed DPF
 - Twenty-three 10-ton haul trucks with catalyzed DPF's
 - Four 20-ton Brookville Loci's with catalyzed DPF's.
 - DCL Mine-X BM Plus[®] DPF
 - 2-Stage unit Base-Metal with Palladium catalyst in front
 - Installed on four Caterpillar/Elphinstone AD30's
 - Excellent Duty Cycle with EGT's >900°F
 - Low NO₂ production as well as DPM regeneration.
 Field measurements show no detectable NO₂ behind two operating trucks at 400 Hp each.

Examples of Exhaust Treatments on 10-ton Haul Trucks


Exhaust Treatments Second Group Attacked – LHD's

LHD Fleet – 73 LHD's

- Active Exhaust Treatments 2 Units
- Passive Exhaust Treatments 59 units,
 - 46 DPF's
 - 13 Flow Through Filters On small LHD's with Deutz 1012 engine - rapid plugging of DPF's
- Disposable filters 21 units (Historical)
 - Removed all 21 units in Q3-06 due to potential fire hazard.
 - Installed 1 cool can with DFE on an LT-270 in Q1-08 Removed in Q2-08 for leaking coolant.
 - Not cost effective due to logistics and do not fit narrow vein mining (see following diagrams & photos) and
 - We will find a fit & forget solution.
- One 1-1/2 yd³ still under testing for conversion to battery power.

Stope Design Considerations for Smaller LHD's

Passive Exhaust Treatments on LHD's

- Passive DPF on a 2 yd³
 - Passives work well on this size LHD.
 - Remotes not so good Engine control
- \circ FTF on the 1-1/2 yd³.
 - Passive DPF's do not work on SMC's 1-¹/₂ yd³ fleet (Deutz 1012).
 - Cool Can/DFE Experiment Failed due to coolant leaks
 - Mann & Hummel Active
 - New Electronic Engine

Active On-Board DPF's

Stillwater tested two different active on-board DPF's

- Rypos Elphinstone R1300
 - '07 MSHA & Environment Canada testing suggests +90% DPM reduction with NO₂ reduction
 - Excellent emissions results DPM, CO, & NO₂ reduction.
 - Requires a larger alternator for electric load.
 - Removed from service in Q2-08.
- Caterpillar Emissions Solutions/Mann & Hummel
 - Good emissions DPM & NO₂ reduction, but no CO conversion
 - Requires additive tank for catalyst to "dose" fuel in fuel tank to assist regeneration.
 - Enerteck's Enerburn Catalyst is MSHA / EPA-approved
 - Currently on an Elphinstone R1300 and an MTI LT-270.
 - Committed to a number for MTI LT-270's.

Caterpillar Emissions Solutions with Mann & Hummel on Elphinstone R1300

Caterpillar Emissions Solutions with Mann & Hummel on MTI LT-270

Exhaust Treatments Third Group Attacked – Utility Fleet & Drill Jumbos

~196 units with wide range of duty cycles and lower hp.

- Eight "medium" duty cycle equipment
 - Five delivery vehicles with dedicated number of operators have DCL Titan [™] – active, off-board, catalyzed DPF's that operate in passive mode
 - Three motor graders have Nett passive DPF's (Cat 120G's with 3126B engines).
- Majority of the remaining fleets have FTF's "Flow Through Filters" utilizing metal substrates (124 Units).
- Next Step (if required) is active, on-board DPF's.

Electric over hydraulic jumbo drills & bolters (27 Units).

- All air-cooled & initially deemed as having infrequent engine operation
- However, they were in production areas w/o exhaust treatment.
- Currently all have DCL Mine-X Ultra FTF's

NO₂ Concerns

- Application of catalyzed treatments should increase NO₂.
 - Early no apparent increase. Stillwater had DOC's on majority of equipment.
- Mid-2007 NO₂ started to "rear its ugly head."
 - Increased number of catalyzed exhaust treatments.
- "Base-metal" DPF's
 - No NO₂, but require VERY high duty cycle ($T_{30} = 400^{\circ}$ C, or greater)
- Active filters seemed to be the only solution and not yet proven in underground mining.
 - Rypos removed measureable NO₂, and had great smoke dot numbers.
 - Mann & Hummel reduced NO₂, and also had great smoke dot numbers.
- Late 2007 DPF's with NO₂ suppressing catalyst
 - Reduce NO₂ by 50% to 80% instead of increasing it by 200% to 500%
 - Requires slightly higher T₃₀ and ULS fuel
 - DCL Mine-X BM Plus Base Metal Plus palladium for catalyst. ($T_{30} \le 400$ °C)

NO₂ Reducing DPF's

Six System Engine Preventive Maintenance (EPM) Form

Site 3800 Shop

8/17/07 Date (m/d/yy)

Vehicle # MU432 Model 1300 STONE Hourmeter 20,064.00

Engine Make & Model 3306 CAT

Pre PM Cleaning

- Steam clean engine and surrounding compartments
 Clean radiator and coolers with degreaser and high volume-pressure water hose
 Air Cooled: Remove inspection covers degreaser and steam clean cylinders and cooler

RPM

RPM

Perform Emissions Test

- > Warm up engine to 180°F oil temperature
- RPM Engine Speed @ hi-idle no load _____ 2300
- Engine Speed @ hi-idle transmission stall 1800
- Engine Speed @ hi-idle transmission & hydraulic stall 1600
- > Measure emissions @ transmission & hydraulic stall

Emissions Testing Performed at:

Full Throttle Transmission Only Stall - Steady State

	Inlet Side	Outlet Side
Smoke Index	5.00	0.00
O _{2 %}	11.50	13.50
O2 % CO ppm	182.10	3.40
NO ppm	302.80	217.10
NO _{2 ppm}	10.90	33.50
CO _{2 %}	7.00	5.50
T. Gas oF	840.60	759.90
MEQI Cert Index	23.00	20.00
NO _{x ppm}	313.70	250.60

DOC Conversion Efficiency

o [1 - CO Out / CO In] X 100 = 98.13 %

o Action required if less than 75% OR greater than 75 ppm CO @ tailpipe after DOC

Six System Engine Preventive Maintenance (EPM)

Hourmeter: 21089

∠/6/2007 9:55:42 PM

- Vehicle #: MU432 Model: ELPHINSTONE R1300
- Engine Make & Model: CATERPILLAR CAT 3306 Pre PM Cleaning
 - Steam clean engine and surrounding compartments Clean radiator and coolers with degreaser and high v Air Cooled: Remove inspection covers degreaser and
- Clean radiator and coolers with degreaser and high volume-pressure water hose
- Air Cooled: Remove inspection covers degreaser and steam clean cylinders and cooler

Pre Testing

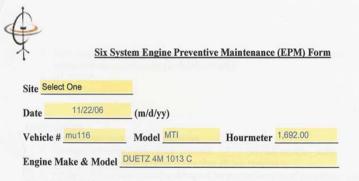
Warm up engine to 180°F oil temperature

- > Engine Speed @ hi-idle no load 2300 RPM
- > Engine Speed @ hi-idle transmission stall 1800 RPM
- Engine Speed @ hi-idle transmission & hydraulic stall 1350 RPM
- Measure emissions @ transmission & hydraulic stall

Emissions Testing Performed at:

Transmission Stall Steady State

		Inlet DPF	Outlet DPF	TV
SMOKE		4.0	0.0	1.0
02	%	12.0	12.0	
CO	PPM	187.7	30.7	
NO	PPM	305.9	346.9	
NO2	PPM	28.3	6.0	
CO2	%	6.6	6.6	
T.GAS	F	821.7	753.7	
MEQI		29.2	17.1	
NOx	PPM	334.1	352.9	


DOC Conversion Efficiency

- [1 - CO Out / CO In] x 100 =83.64 %

- Action required if less than 75% OR greater than 75 ppm CO @ tailpipe after DOC

Flow Through Particulate Filters

- For many of Stillwater's smaller engines, ceramic, wall flow filters resulted in blown engines or plugged filters, or both.
 - Needed a filter with lower backpressure and less chance of plugging
 - Flow Through Filters appeared to be the answer.
- Newer generation FTF's DCL Mine-X Ultra
 - DPM reduction improvement over older generations according to Smoke Dot Numbers
 - Could increase NO₂
- Industry needs FTF's with NO₂ reducing technology.

Pre PM Cleaning

- Steam clean engine and surrounding compartments
 Clean radiator and coolers with degreaser and high volume-pressure water hose
 Air Cooled: Remove inspection covers degreaser and steam clean cylinders and

Perform Emissions Test

cooler

- > Warm up engine to 180°F oil temperature
- Engine Speed @ hi-idle no load 2125 RPM
- Engine Speed @ hi-idle transmission stall 2090 RPM
- > Engine Speed @ hi-idle transmission & hydraulic stall 2090 RPM
- Measure emissions @ transmission & hydraulic stall

Emissions Testing Performed at:

Full Throttle Transmission + Hyd Stall - Steady State

	Inlet Side	Outlet Side
Smoke Index	7.00	3.00
O _{2 %}	11.70	12.40
CO ppm	176.20	60.00
NO ppm	806.40	847.10
NO _{2 ppm}	46.60	22.30
CO _{2 %}	6.80	6.30
T. Gas 🕞	447.40	553.30
MEQI Cert Index	54.90	43.70
NO _x ppm	853.00	869.40

DOC Conversion Efficiency

o [1 - CO Out / CO In] X 100 = 65.95 %

• Action required if less than 75% OR greater than 75 ppm CO @ tailpipe after DOC

Six S	System Engine Preven	tive Maintenance	(EPM) Form
Site 6100 Shop			
Date 9/28/06	(m/d/yy)		
Vehicle # AV021	Model Mule	Hourmeter	985.00
Engine Make & Mode	Kawasaki 1DHXL		
Perform Emissions Te	st 1e to 180°F oil tempera		
 Engine Speed @ Engine Speed @ Engine Speed @ 	 hi-idle no load hi-idle transmission st hi-idle transmission & hi-idle transmission & nos @ transmission & formed at: 3 - Transient 	3813 RPM tall	RPM RPM
Engine Speed @ Engine Speed @ Engine Speed @ Engine Speed @ Measure emission Measure emissions Testing Per Free Snap Acceleration >	 hi-idle no load hi-idle transmission st hi-idle transmission & hi-idle transmission & nos @ transmission & h formed at: 	3813 RPM tall	RPM Outlet Side
Engine Speed @ Engine Speed @ Engine Speed @ Engine Speed @ Measure emission Cmissions Testing Per Free Snap Acceleration >	 hi-idle no load hi-idle transmission st hi-idle transmission & hi-idle transmission & formed at: (3 - Transient Inlet Side 	3813 RPM tall	Outlet Side 7.00
Engine Speed @ Engine Speed @ Engine Speed @ Engine Speed @ Measure emission Cmissions Testing Per Free Snap Acceleration > moke Index %	hi-idle no load hi-idle transmission st hi-idle transmission & nos @ transmission & h formed at: (3 - Transient Inlet Side 9.00	3813 RPM tall	
Engine Speed @ Engine Speed @ Engine Speed @ Measure emission Cmissions Testing Per Free Snap Acceleration > fimoke Index 2 %	hi-idle no load hi-idle transmission st hi-idle transmission & nos @ transmission & h formed at: (3 - Transient Inlet Side 9.00 15.90	3813 RPM tall	Outlet Side 7.00 16.30 917.00
Engine Speed @ Engine Speed @ Engine Speed @ Engine Speed @ Measure emission Emissions Testing Per Free Snap Acceleration X Smoke Index Y Y O ppm O	hi-idle no load hi-idle transmission st hi-idle transmission & hons @ transmission & formed at: 3 - Transient <u>Inlet Side</u> 9.00 15.90 1194.30	3813 RPM tall	
Engine Speed @ Engine Speed @ Engine Speed @ Engine Speed @ Measure emission Emissions Testing Per Free Snap Acceleration > Gmoke Index P2 % CO ppm	hi-idle no load hi-idle transmission st hi-idle transmission & hi-idle transmission & formed at: 3 - Transient Inlet Side 9.00 15.90 1194.30 102.50	3813 RPM tall	Outlet Side 7.00 16.30 917.00 141.70
Engine Speed (a) Engine Speed (a) Engine Speed (a) Engine Speed (a) Measure emission Comissions Testing Per Free Snap Acceleration > Simoke Index D2 % CO ppem NO ppem NO ppem NO ppem	hi-idle no load hi-idle transmission st hi-idle transmission & h formed at: (3 - Transient Inlet Side 9.00 15.90 1194.30 102.50 15.50	3813 RPM tall	Outlet Side 7.00 16.30 917.00 141.70 2.40
Engine Speed (a) Engine Speed (a) Engine Speed (a) Engine Speed (a) Measure emission Measure emission Emissions Testing Per Free Snap Acceleration > Gmoke Index D2 % CO ppm NO2 ppm NO2 ppm CO2 %	hi-idle no load hi-idle transmission st hi-idle transmission & h formed at: (3 - Transient Inlet Side 9.00 15.90 1194.30 102.50 3.80	3813 RPM tall	RPM Outlet Side 7.00 16.30 917.00 141.70 2.40 3.50

DOC Conversion Efficiency

o [1 - CO Out / CO In] X 100 = 23.22 %

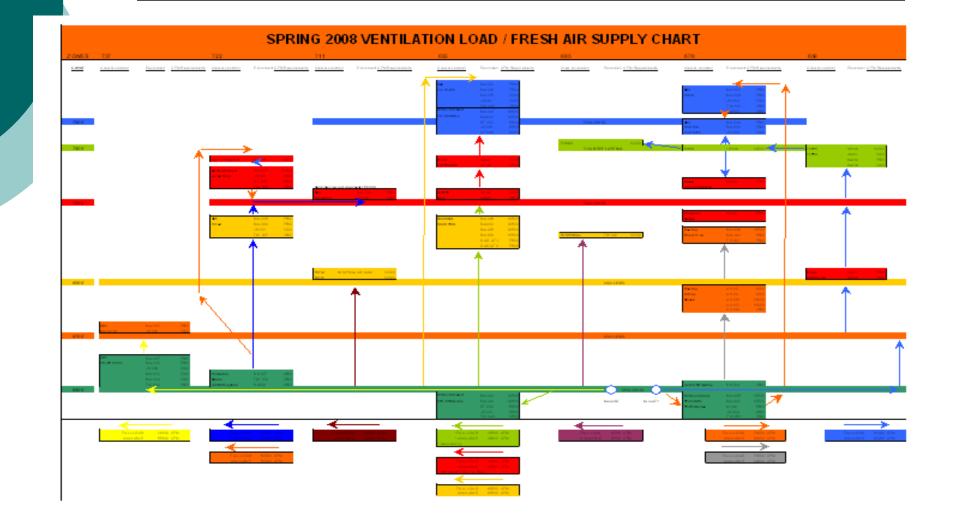
o Action required if less than 75% OR greater than 75 ppm CO @ tailpipe after DOC

Bio-Diesel Blends

Isozone Studies & Stillwater Experience – Bio-Diesel is the only alternative fuel providing a DPM reduction.

- PuriNOx cold & warm weather emulsions, Soy-based bio, WVO bio, Synthetic Diesel fuel, etc.
- Summer '05 B5, B10 & B20 showed measurable reductions in discrete area of mine with no operational issues.
- Summer '06
 - B20 blended with #2 ULSD in complete underground
 - B50 & B99 in one captive LHD stope
 - Miners noticed improvement in their work environment
 - Noticeable change from B20 to B50 in Area & Personal samples
- Spring '07 Spring '08
 - Completed two UG storage facilities to support winter use of B50
 - \circ $\,$ B50 showed improvement in DPM samples.
- Late Spring '08 -
 - Increased blend to B70.
 - Currently winter testing with additive to determine CFP, etc.

UG Bio-Diesel Storage



Bio-Diesel Blends

- Successful with B50 bio-diesel blend in winter
 - Additives available that bring cold weather properties of B50 to -10°F.
- Summer use of B70 successful
- Research indicates bio-diesel reduces Balance Point Temperature for DPM regeneration, widening potential DPF applications:
 - B20 => 45°C
 - B100 =>112°C
- Current Issues
 - Local Bio-Diesel producers exporting product
 - Fuel Quality plugging DPF's (Magnesium, Calcium, & Phosphorus)

Administrative Controls

Reduce Diesel-Powered Mining Techniques

• Electric powered haulage to reduce diesel

- 3500 Rail Haulage
 - Resurrected Greensburg 8-ton battery locomotives.
 - Removed five 10-ton haul trucks @ 215hp each from area.
- Future 2000 Level with battery or trolley locomotive haulage
- ABB Kiruna trolley-powered electric haul trucks to move muck between 2000 Rail and Hoist.
 - 535 Hp, 38-ton payload
- Battery-powered 1-1/2 yd³ LHD.
 - Final testing completed
 - Delivery in Fourth Quarter '08.
- Convert 25% of production mining to captive slusher, replacing diesel LHD's

Electric Powered Equipment

Kiruna Electric Haul Truck

- Electric Trolley Powered
- All AC power
 - Three VFD's
 - Two Traction motors & one service motor
- o 38 Tons
- 10+ mph
- 100 Hp diesel engine for off-trolley operation

Results

- By Q3-08 the Stillwater Mine installed 247 exhaust treatments
 - 5 active, off-board DPF's operating passively (DCL Titan [™])
 - 2 active, on-board DPF (Mann & Hummel)
 - 80 Passive units
 - 160 Flow Through Filters
 - Successful implementation of NO₂ reducing technologies.
- Few passive wall flow DPF applications left for the Stillwater Mine
 - Remaining applications will mostly be flow through filters with lower DPM efficiencies, or active on-board DPF's.
- Bio-diesel contributed additional DPM reduction.
 - We assume ~50% for B50.
 - Currently, we do not yet have enough samples post B70, to estimate DPM reduction.

Final Comments

• Has Stillwater had success? YES!

- Mine Ventilation upgrade projects,
- Emissions-based maintenance,
- NO₂ Suppressing, Passive &Active DPF's,
- Successful transition to B50 Bio-D blend with increase to B70,
- Electric-powered haulage & captive slusher stopes to replace diesel power, and
- Preliminary acceptance of battery-powered LHD.
- Extension Letter from MSHA

• Are Stillwater's efforts complete? NO!

- New technology is available and needs to be tested
- We will continue to seek and share information

• What prevents achievement of final goal? TIME!

- Time for manufacturers to address low duty cycle equipment
- DPF's MUST have NO₂ reducing technologies and should be "fit & forget"