HOW MUCH VENTILATION AIR TO SUPPLY?

DEPENDS ON

- 1. MINING METHOD
- 2. PRODUCTION RATE
- 3. ROCK HANDLING INDICATIVE AMOUNTS

$$Q = \alpha t + \beta$$

- α mining method (t = production rate Mtpa)
- β rock handling (shaft or decline)

Mining method	$lpha$ (m 3 /s/M t p a)
Block caving	50
Room and pillar (continuous miner)	75
Sub level caving	125
Sub level open stopes > .5 Mt	175
Sub level open stopes < .5 Mt	250
Room and pillar (conventional)	200
Top slice and bench	250
Longitudinal sublevel caving	250
Mechanised cut and fill	325
Non-mechanised mining	400

ROCK HANDLING

Shaft haulage, β = 100 m³/s to 150 m³/s depending on whether conveyors are used. Includes a typical jaw crusher, if a gyratory crusher is used, β may be up to 100 m³/s greater. Includes normal ore pass ventilation.

Decline haulage, β = 7.5 x Mtpa.km (minimum 50 m³/s).

EXAMPLES

☐ 4.0 Mtpa sub level caving operation with a shaft and gyratory crusher.

$$Q = 4.0 \times 125 + 125 + 100 = 725 \text{ m}^3/\text{s}$$

☐ 1.5 Mtpa SLOS with small stopes, decline (1:8) haulage, mean depth 1000 m

$$Q = 1.5 \times 250 + 1.5 \times 8 \times 1.0 \times 7.5 = 465 \text{ m}^3/\text{s}$$

CAUTIONS

Development – α values include a nominal amount of 15% of production rate. Higher development rates assessed at 250 m³/s per Mtpa of additional development.

Unusual conditions – this may include heat and radiation. If the mine depth is close to the critical depth, increasing air quantities may be justified to avoid refrigeration.