

Application of Three-phase Foam in Extinguishing Spontaneous Combustion of Coal

Yutao Zhang, J.C. Tien and D.M. Wang

March 2, 2011 2011 SME Annual Meeting Denver, CO

Outline

- Background of Sponcom
- Components of Three-phase Foam(TPF)
- Characteristics of TPF
- Case Study of TPF
- Conclusions and Perspectives

Background

In the United States,

➤ 1978–1988: ~15% of underground coal mine (UGCM) fires were caused by the sponcom of coal

➤ 1990–1999: UGCM fires caused by sponcom account for >17%.

➤ 2000–2006: 10 UG sponcom of coal were reported.

Consequence of Sponcom

Sponcom may cause huge economic losses, temporary or permanent mine closures, significant environmental problems, even fatalities.

- ➤ Three of the reported mine fires resulted in subsequent methane explosions;
- ➤ In China, a coal mine explosion that happened in 2004 caused 166 fatalities. The most possible reason is the sponcom of coal.

Prevention of Sponcom

Table1. Comparison among Different Fire Fighting Agents

Tablet. Comparison among Different rife righting Agents						
Agents	Components or Category	Main Pros	Main Cons	$Cost (\$/m^3)$		
Water	Tap Water	(1) Cool the temperature quickly; (2) Large amount of vapor produced can dilute the oxygen concentration in order to inert the fire zone; (3) Low cost	(1) Can only cover a small area because of its excessively good flowability; (2) Easily flow to the low area without reaching the higher fire zone; (3) May run out of the gob area and contaminate the working face and lower the coal quality.	Very low		
Slury	Fly Ash, Sand, Gypsum, Cement etc.	(1) Effectively cover the coal and isolate it from the oxygen; (2) Cool the temperature; (3) Simple technique; (4) Low cost	 (1) Cannot uniformly cover the coal and can only cover a small area; (2) Flow to the low area without reaching the higher fire zone; (3) May run out of the gob area and contaminate the working face. 	1.5-5		
Inhibitor	Some surfactants such as MgCl ₂ , NaCl, Ca(OH) ₂ , Soluble Glass etc.	(1) Inert the surfactant structure of coal and prohibit the oxidation; (2) Cool down the coal and can keep the coal humid for a long time.	(1) Complex technique; (2) Difficult to uniformly sprinkle to the coal; (3) Corrode the equipment underground.	5-10		

Prevention of Sponcom

Inert Gases	Nitrogen, CO ₂ etc.	(1) Dilute the oxygen concentration; (2) Dilute the explosive gases in the gob area; (3) does not corrode the equipment and does not harm people's health;	 (1) cannot stay in the gob area or fire zone for a long time due to the leakage; (2) The Nitrogen or CO₂ generator needs maintenance frequently. (3) Cannot cool down the fire zone and may take a long time to extinguish the fire. 	Relatively low
Gels	Ammonium- salt Gel	 (1) Can cover the coal and block the leakage; (2) High temperature resistance; (3) Effective for small and local fire zone. 	(1) Poor flowability;(2) Doesn't work for large-area fire zone,	10-15
	Macromolecul ar Gel		(3) The gel will fracture in a certain time; (4) High cost	20-25
Leakage- blocking Material	Luokexiu; Malisan; Urethane Foam	(1) Has excellent crush resistance and leakage blockage; (2) Isolate the coal from oxygen.	(1) Complex technique; (2) Liberate harmful gases during pyrolysis; (3) some are combustible in high temperature; (4) High cost	15-170
Regular Two- phase Foam	Nitrogen/CO ₂ - water Foam	 (1) Can reach the high part of the fire zone; (2) Uniformly spread in the gob area; (3) Suitable for combustion in gob/mined-out area or deep part in a coal pile. 	Foam is easy to rapture in order not to cover the coal for a long time.	Relatively low

Three-phase Foam

Three phases

(1) Gas: N_2

(2) Liquid: Water

(3) Solid: Fly ash or Earth

Principles of TPF in Fire Fighting

Each phase has its own purpose:

- ➤ Water: Cool down the fire and lower the temperature
- ➤ Nitrogen: Inert gas ——→ Dilute the concentration of oxygen
- > Fly ash/earth: Cover the coal to isolate the air
- Capture the Free Radicals

e-phase Foam

Retention Time of Foam / h

25

- Expansion Ratio of Foam to Water: 30
- Mass Ratio of Fly ash to Water: 4:1
- Concentration of Foaming Agent: 0.2%
 - Retention Time of Foam: \sim 10h
- Cost: 0.4 ⊄ /ft³ (0.2\$/m³)

Three-phase Foam

Bench Test of TPF

Fire Fighting Test

Comparison between water and three-phase foam

Three-phase Foam

April 17, 2018

Case Study

In October, 2003, a serious methane explosion happened in Baijigou Coal Mine in China, which caused a fire zone of more than 300 thousand m² (~3.2 M ft²).

Missouri University of Science and Technology

Smoke run out of the shaft

The destruction of a seal

The destruction of ventilation equipment room

April 17, 2018

MISSOURI

April 17, 2018

Conclusions and Perspectives

- TPF works very well in controlling the spontaneous combustion of coal
- TFP is not quite effective for the prevention of air leakage into the gob after the rupture of the foam.
- The combination of TPF and Gel may be a good solution

April 17, 2018