Evaluating the Use of Booster Fans in Two Underground Coal Mines

Jessica M. Wempen Felipe Calizaya Randall D. Peterson Michael G. Nelson

University of Utah, Salt Lake City, UT

Outline

- Introduction
- Objectives
- Ventilation Models
 - Mine A-Room and Pillar
 - Mine B-Longwall
- Conclusions

Introduction

- As underground coal mines develop ventilation demands are increased.
- · Ventilation systems are often enhanced by:
 - Upgrading surface fans.
 - Installing new surface fans.
 - Developing new ventilation shafts.

3

Introduction

- Booster fans are an alternative method of enhancing a ventilation system.
- Adequately located and sized booster fans can:
 - Reduce the required main fan pressure.
 - Reduce the overall system leakage.
 - Reduce the total power consumption.

Introduction

- In the US, booster fans are prohibited in bituminous and lignite coal mines by CFR 30 Section 75.302.
- Uncontrolled recirculation is a notable risk associated with their use.

5

Objectives

- Baseline ventilation models were developed.
- Expanded ventilation models were established.
- Future ventilation requirements were estimated.
- Expanded ventilation systems were modeled using booster fans.
- All models were inspected for recirculation.
- System power requirements were evaluated.

Mine A-Background

- Room and Pillar is used as the primary means of coal production.
- Five development sections are maintained.
- The coal seam is nearly horizontal with an average thickness of 1.8 m (6 ft).
- Maximum depth of cover is 107 m (360 ft).
- 6.1 km (20,000 ft) from the surface to the farthest working face.

7

Mine A-Ventilation System

- Powered by a 670 kW (900 hp) exhausting fan.
- Two intake airways and one return airway.
- Mains typically driven with four intake, four return, and three neutral airways.
- Sub-mains typically driven with two intake, two return, and three neutral airways.

Mine A-Expanded Model

- Base model was expanded to include five years of additional development.
- After five years, most of the western region is mined out. A large portion of this area is sealed.
- Future development advances mostly north and east.
- A booster fan was added to the expanded model and the model was checked for recirculation.

11

Main Fan Operating Parameters Quantity: 200 m²/s (420 c/in) Static Prosure: 2.24 c/e (6 in . wg) Air Power: 440 kW (590 hg) Main Fan Face D Main Fan Operating Parameters Quantity: 200 m²/s (420 c/in) Static Prosure: 2.24 c/e (6 in . wg) Air Power: 440 kW (590 hg) Face D Main Fan Face D

Mine A-Summary					
(), m³/s	Press, kPa	P, kW		
Base Case:					
Main Fan	238	1.95	460		
Expanded (Case:				
Main Fan	200	2.24	440		
Booster Fan Ca	se:				
Main Fan	180	1.37	245		
Booster Fan	150	0.57	85		
Total Air Power			330		
Power	saved by	two fan system: 1	10 kW		

Mine A-Conclusions

- A booster fan can make a difference in the ventilation system:
 - System air power is reduced by 110 kW (150 hp).
 - Main fan pressure is reduced by 0.87 kPa.
 - By reducing leakage the total required quantity is reduced by 20 m³/s (42 kcfm).
- Because of the relative shallow depth of cover a new shaft may be more practical.

15

Mine B-Background

- Longwall is used as the primary means of coal production.
- Three continuous miner sections and one longwall are maintained.
- The coal seam is nearly horizontal and ranges in thickness from 2 m (6.6 ft) to 6 m (19.7 ft).
- Maximum depth of cover is 610 m (2,000 ft).
- 18 km (59,000 ft) from the surface to the farthest working face.

Mine B-Ventilation System

- Powered by a single exhausting fan.
- More than four intake airways and one return airway.
- Mains typically driven with two intakes, two returns, and one neutral airway.
- Longwall panels are typically driven with one intake, one return, and one neutral airway.

17

Main Fan Operating Parameters Quantity: 319 m²/s (6/5 kcfm) Static Pressure: 1.79 kPa (7.19 in. wg) Air Power: 570 kW (765 hp)

Mine B-Expanded Model

- Base model was expanded to include additional years of development.
- Future development expands dramatically to the west.
- Depth of burden increases substantially as the mine develops.
- A booster fan was added to the expanded model and the model was checked for recirculation.

	Mine F	3-Summar	·V	
				l
	Q, m ³ /s	Press, kPa	P, kW	ı
Base Case:				ı
Main Fan	319	1.79	570	
Expanded	Case:			
Main Fan	350	2.74	960	ı
Booster Fan	Case:			ı
Main Fan	320	1.74	555	ı
Booster Fa	n 82	0.75	60	ı
Total Air Power			615	
Pow	er saved by	two fan system: 3	45 kW	2
			2	2

Mine B-Conclusion

- A booster fan can make a difference in the ventilation system:
 - System air power is reduced by 345 kW (465 hp).
 - Main fan pressure is reduced by 1 kPa (4 in. wg).
 - By reducing leakage the total required quantity is reduced by 30 m³/s (64 kcfm).
- For this mine the impact of a booster fan is significant.

23

Conclusions

- The demand on ventilations systems generally increases with mining advance.
- Properly sized and located booster fans can:
 - Reduce the required system air power.
 - Reduce the required main fan pressure.
 - Reduce system leakage.
- Booster fans could be a good alternative to developing new shafts or installing new surface fans.