

2011 SME Annual Meeting

Modeling Atmosphere Composition and Determining Explosibility in a Sealed Coal Mine Volume

Jianwei Cheng, Graduate Research Assistant
Yi Luo, Associate Professor
Department of Mining Engineering
West Virginia University

Presentation Outline

- Introduction
- Time-dependent Composition change model for sealed atmosphere
- Explosibility Triangle
- Model Demonstrations
- Conclusions

Introduction

- Sealing mined-out areas is a common practice to reduce ventilation requirement
- Critical time period for a sealed area: gas
 composition goes through the lower and upper
 explosion limits
- Injection of inert gas (N₂ or CO₂), if needed, could short the critical period

Introduction

- The atmosphere in the sealed areas should be well managed to ensure mine safety
 - Things to know......
 - Atmosphere composition (volumetric concentration of various gases) at any given time
 - Changing pattern of the atmosphere composition
 - Exposibility of the atmosphere
 - **>**
 - It is better to know in advance for a better plan!

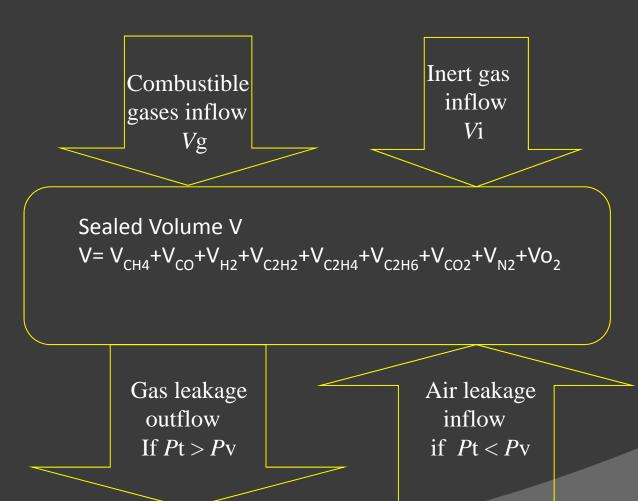
Introduction

Research objectives

- Development of a mathematical model to simulate the time-dependent atmosphere composition in a sealed mine area.
- Expand Coward method in defining the explosibility triangle to include more but common combustible gases
- Development of a computer program to facilitate the application of both the gas composition simulation model and determination of the explosibility.

Common combustibles in a sealed area

Considering gas explosion and coal oxidation:


Gas explosion: $CH_4+2O_2=CO_2+2H_2O$

Coal oxidation: aCoal+bO₂=cCO+dCO₂+eH₂O+fC_xH_y

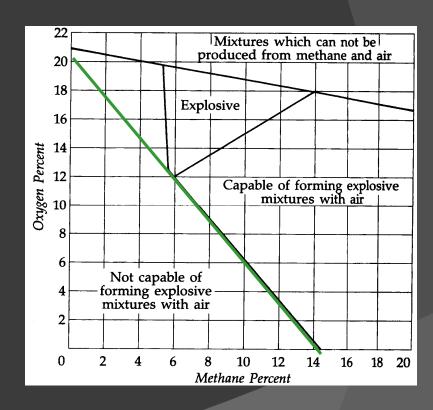
- ❖ The byproduct gases includes CO₂, CO, and C_xH_y
- ❖ In coal mine, products of slow oxidation, fires or explosions could produce C₂H₂, C₂H₄, and C₂H₆.

Composition change model

- ❖ The change of gas composition in a sealed volume is controlled by many independent variables :
 - inflow of methane
 - inflows of other combustible gases
 - air leakage in and out
 - inert gases injected
 - > change in atmospheric pressure (P_v)
 - **>**
- ❖ These factors should be considered in the mathematical model

The law of mass conservation

$$M_{t} = M_{0} + \int_{0}^{t} \Delta M dt$$


The ideal gas law

$$PV = mR_gT$$

- Depending on the relationship between the barometric pressure(P_v) and the pressure in sealed volume (P_t).
 - $P_t < P_v$ Ingassing.
 - $P_t > P_v$ outgassing

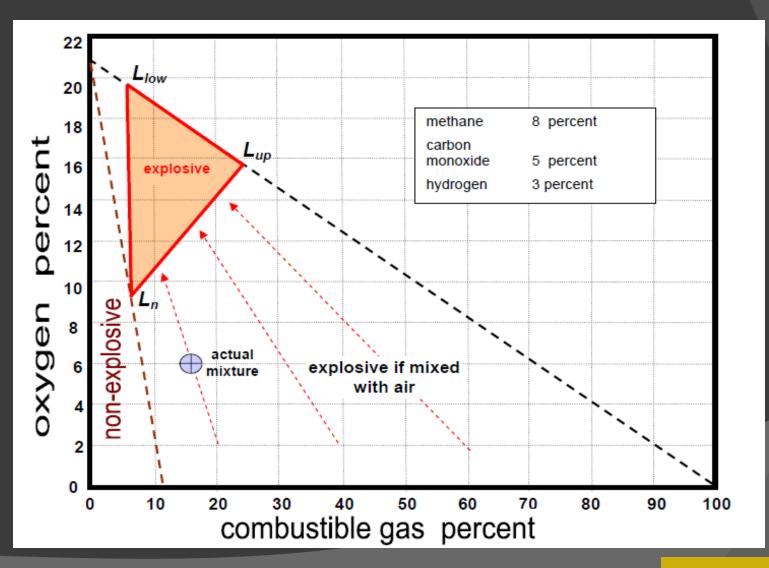
Coward Explosibility Triangle

- A method to determine the explosibility of the mixture of air and combustible gases developed by Coward in 1952.
- Only considers three common combustible gases (CH₄, CO and H₂).
- Explosibility triangle defined by three characteristic points
 - Lower flammable limit
 - Upper flammable limit
 - Nose limit.
- Explosibility depends on the percents of the combustible gas, oxygen and inert gases.
- Shows five distinctive zones

Generating the resultant Coward triangle

- Considering an air mixture with three combustible gases of CH₄,
 CO and H₂.
- The characteristic points are based on each individual flammable limits:

Table 1 Vertices of explosive triangles (percentages).								
Gas	Flammable Limits		Nose Limits		Nitrogen to be added to make			
	Lower	Upper	Gas	Oxygen	mixture extinctive: (N+ m³ of ni- trogen per m³ of combustible gas)			
Methane (CH₄)	5.0	14.0	5.9	12.2	6.07			
Carbon monoxide (CO)	12.5	74.2	13.8	6.1	4.13			
Hydrogen (H ₂)	4.0	74.2	4.3	5.1	16.59			


Example:

A sample taken from a sealed area yields the following analysis.

```
methane 8 per cent carbon monoxide 5 per cent hydrogen p_t = 16 per cent p_t = 16 per cent
```

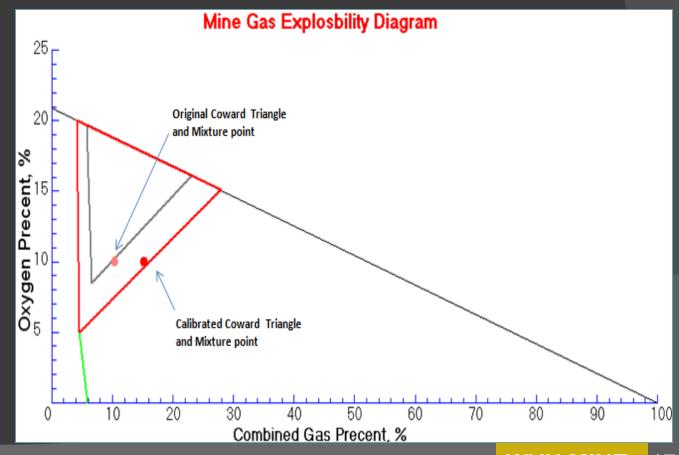
oxygen 6 per cent inerts 78 per cent

Construct the Coward diagram for this condition.

- Expanded Coward explosibility triangle
- Why do we need to expand the triangle?
 - Low temperature oxidation of wood and coal in sealed area would likely occur to produce various hydrocarbon gases
 - Due to the large explosive range for hydrocarbon gases, their presence could significantly change the explosibility of the air-gas mixture.
 - The Coward triangle can be expanded to include more combustible gases as long as the characteristic points of these combustible gases are known.

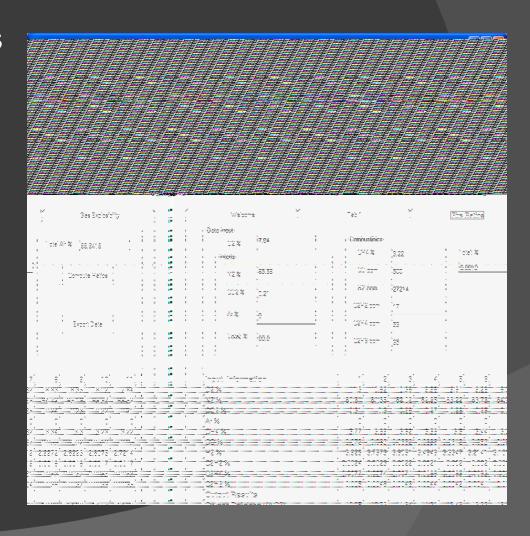
❖ Three more hydrocarbon gases, acetylene (C₂H₂), ethylene (C₂H₄) and ethane (C₂H₆) are incorporated in addition to the original CH₄, CO and H₂.

Table 2 Vertices of explosive triangles (percentages).								
Gas	Flammable Limits		Nose Limits		Nitrogen to be added to make mixture extinctive: (N+ m3 of ni-			
	Lower	Upper	Gas	Oxygen	trogen per m³ of combustible gas)			
Methane (CH ₄)	5.00	14.00	5.90	12.20	6.07			
Hydrogen (H ₂)	4.00	74.20	4.30	5.10	4.13			
Carbon monoxide (CO)	12.50	74.20	13.8	6.10	16.59			
Ethylene (C ₂ H ₄)	2.75	28.60	2.89	6.06	15.60			
Ethane (C ₂ H ₆)	3.00	12.50	3.12	8.41	12.80			
Acetylene (C ₂ H ₂)	2.50	80.00	2.67	5.07	28.91			


A sample taken from a sealed area yields the mixture composition as follows:

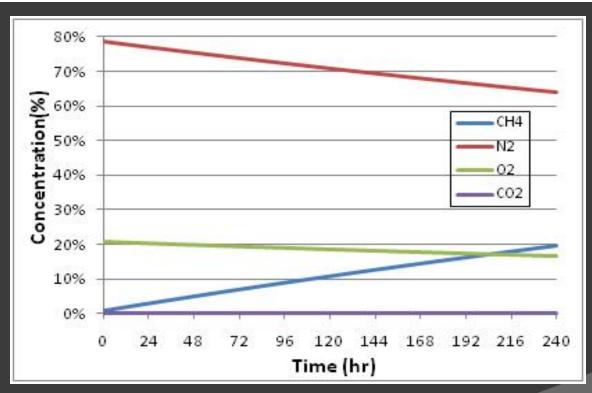
CH₄: 5.3% H₂: 2.00% CO: 3.00%

 C_2H_2 : 4.00% C_2H_4 : 0.50% C_2H_6 : 0.40%


CO₂: 17.00% N₂: 57.80%

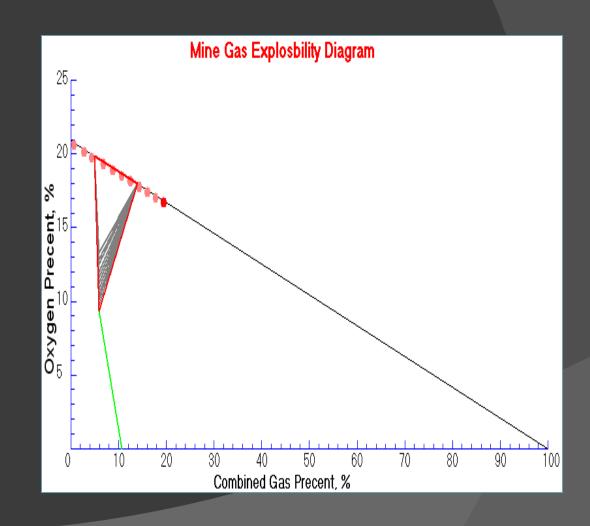
O₂: 10%

Program development


- A computer program is developed in MathCAD® environment to model the atmosphere composition in an sealed mine area.
- A Visual Basic program has been developed to implement the expanded Coward explosibility triangle method.

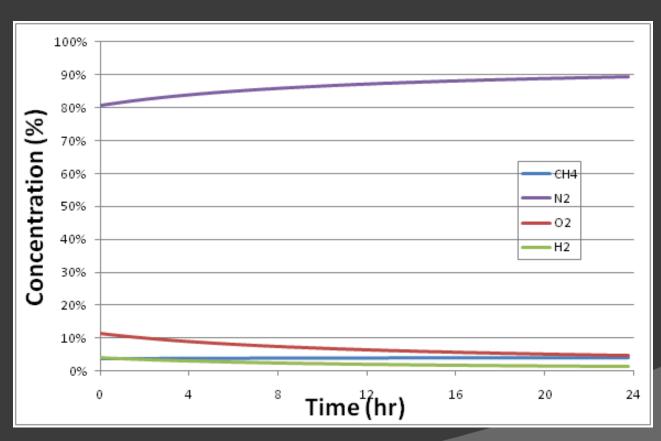
Case 1

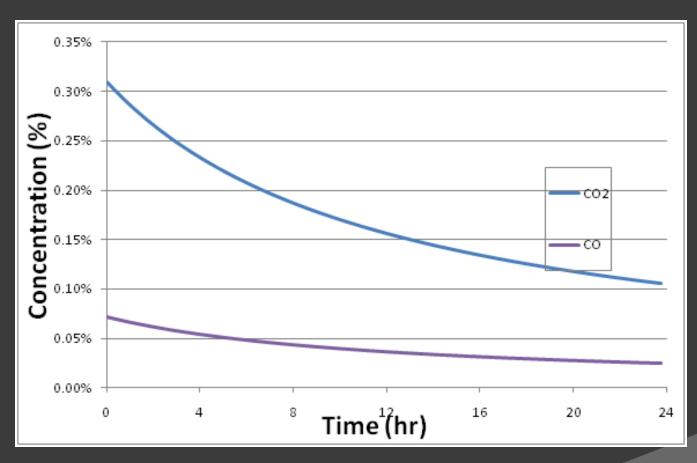
- To find out the time needed for the sealed area to pass through the critical period
- Outgassing condition
- Initial Condition:
 - CH₄: 0.66%; N₂: 78.68%; O₂: 20.6%; CO: 1ppm; CO₂: 0.06%;
 - The sealed volume is 1,000,000 m³
 - 0.25 m³/s CH₄ inflow rate
 - No N₂ injected
 - The coefficient leakage 0.003 m³/s/Pa^{1/2}
 - The environment temperature is 20°C.


Different compositions change over time

CH₄, N₂, O₂ and CO₂

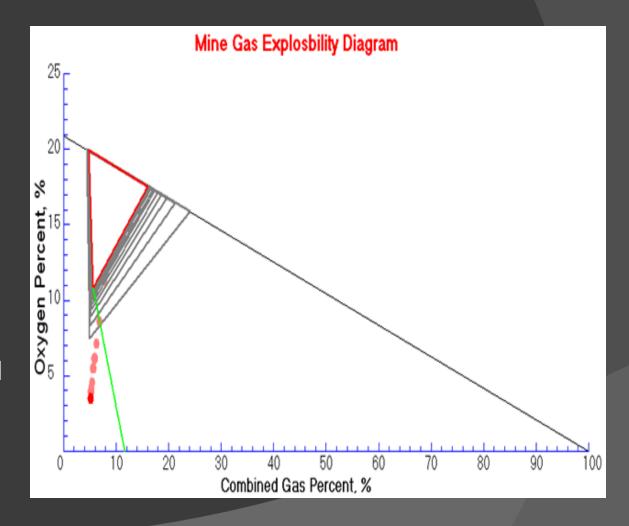
ExplosbilityDiagram

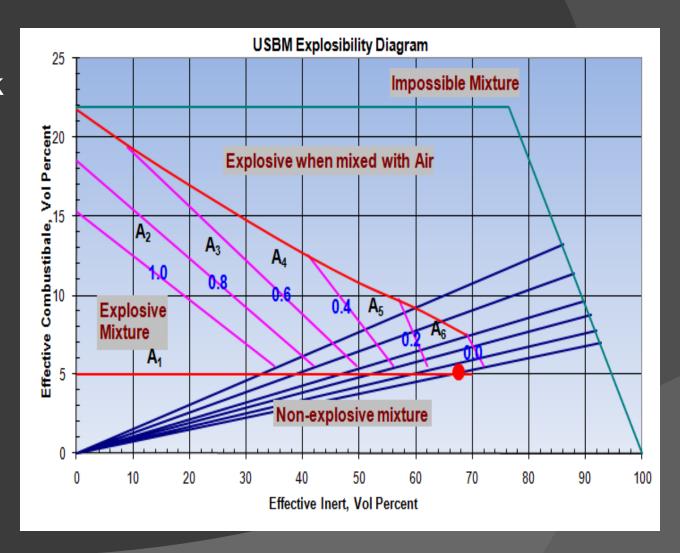

- Non-explosive at beginning.
- Time step of 1 days.
- Explosive between the second and the seventh day.
- Need seven days to become non-explosive itself.


Case 2

- To check the effectiveness of N₂ inertization,
- Ingassing condition
- Initial Condition:
 - CH₄: 3.77%; N₂: 80.61%; O₂: 11.3%; CO₂: 0.31%; CO: 721ppm; C₂H₂: 24ppm; C₂H₄: 77ppm; C₂H₆: 50ppm; H₂: 39228ppm.
 - The sealed volume is 1,000,000 m³
 - 1 m³/s CH₄ inflow rate
 - 50m³/s pure N₂ injected.
 - The coefficient leakage 0.003 m³/s/Pa¹/²
 - The environment temperature is 20°C.

Different compositions change over time


CH₄, N₂, O₂ and H₂


CO₂ and CO

ExplosbilityDiagram

- Explosible at beginning.
- Time step of 0.24 hours.
- The explosibility triangle shrinks.
- The actual mixture point moves toward the lower edge of the triangle after 7 hours.

- Double check using the USBM explosibility diagram.
- Based on the 6th hour data. (Calculated Ratio = 0.59)

Conclusions

- A time-dependent mathematical model to simulate the composition change in the sealed volume has been developed based on the law of mass conservation and the ideal gas law. It provides a useful tool for us to understand the behavior of the sealed volume.
- The original Coward method is also expanded to consider the hydrocarbon gases in drawing the explosibility triangle so more accurate explosibility assessment can be made.
- A computer program to incorporate the atmosphere composition model and the expanded Coward method has been developed.