

Computer Simulation Programms in Mine Rescue Education and Training, on the Example of Student Mine Rescue Teams

Prof. Dr.-Ing. Helmut Mischo ¹, Prof Dr.-Ing. Jürgen Brune ²

- ¹ Technische Universität Bergakademie Freiberg, Germany
- ² Colorado School of Mines, USA

- 1 Motivation
- 2 Mine Rescue Education in an Academic Environment
- 3 Theoretical Lectures and Practical Exercises
- 4 Computer Simulation Programs A Support Tool
- 5 Mine Rescue Simulator at TU Bergakademie Freiberg
- 6 Mine Rescue Simulator at Colorado School of Mines

- Mechanization and decreasing staff numbers
- Underground mines are deeper and larger
- Experience loss due to generation shift

Young engineers lack experience, especially under

difficult circumstances

Engineers face growing responsibilities

Education of Future Mining Engineers in Mine Rescue, Disaster Management and Health and Safety

Mining schools understand safety in mining as a basic competence for their students.

Key aspects

- Mine rescue: rescue fire, smoke, gases, etc.
- Disaster management
- Health and safety
- Protecting the mine and its investment

Mine Rescue Education in an Academic Environment

Mine Rescue Course: Target Groups

Basic competencies in disaster management and mine rescue organization are required in

- Mining
- Specialized underground construction
- Confined space work
- Tunneling
- Petroleum engineering
- Chemical engineering
- Energy and gas technology

Simulator Exercises

Basic competences

- Team structure and operation
- Fresh air base and incident command
- Rescue strategy
- Team advance
- Team discipline

Basic Surface Training

Goals:

- Shouldered apparatus
- Team operation
- Communication
- Problem narrative
- Strategy
- Team movement
- Team discipline

Basic Underground Training

Goals:

- Shouldered apparatus in confined spaces
- Search and rescue
- Execute typical work assignments
- Communication /
- Follow problem description
- Team strategy and decision making

Basic Underground Training

Movement in Confined Spaces

Confined Space Exercise

Movement Underground

Hot Underground Exercises

Exercises under Apparatus

Training Under Apparatus and Live Fire

Computer Simulation Programs

Need for Simulation Programs

- Limited underground experience for most students
- Practice goals
 - Team member role
 - Team leader role
 - Following orders
 - Knowing and adhering to rules
 - Communication skills
- Less time consuming than underground exercises
- No cost for apparatus maintenance
- Better supervision and control

Computer Simulation Programms

VR Mine Rescue Simulation Programs

- VR mine rescue are like computer games.
- Close-to-reality game environment
- Multi-player mode, first-person-actor mode
- Each player plays a mine rescue team member
- Team communications: Internal, FAB and ICC
- Trainer controls the simulator and monitors student progress,
- Trainer can create surprise hazards
- Training sessions are recorded and decisions can be reviewed in "what-if" scenario variations.

Computer Simulation Programms

VR Mine Rescue Simulation Programs

Trainers develop specific training scenarios

- Type and level of tasks
- Allocation of challenges within the model
- Variable oxygen consumption
- Available equipment
- Visibilty (Smoke)
- Realistic ventilation including fire effects
- Gas concentrations
- Simulated equipment failures

Computer Simulation Programms

Close-to-Reality-Environment

Pros:

- + "Real-life" environment based on survey data
- + Scenarios are realistic
- + Ventilation and visibility can be simulated
- + Ralistic duration, moving speed and challenge levels
- + Any specific mine can be simulated, as long as mine data are available

Cons:

- High upfront effort for the creation of the model
- High end CPUs and graphic cards necessary

Computer Simulation Programms Animated-Mine-Layout

Pros:

- + Any mine can be created using a ,drift library'
- + Well-developed gaming technology
- + Mine ventilation / visibility can be simulated
- + Choice of moving speed and challenge level
- + Large library of equipment and scenarios
- + Equipment can move and run
- + Runs on lower end computers

Cons:

- Environment looks less realistic
- Difficult to design three-dimensional games

3-D-Scan with Autonomous Robot

Computer Simulation Programms in Mine Rescue Education and Training, on the Example of Student Mine Rescue Teams | Prof. Helmut Mischo | Prof. Jürgen Brune | Somp Annual Meeting June 2017 |

Trainer / Supervisor Screen

Computer Simulation Programms in Mine Rescue Education and Training, on the Example of Student Mine Rescue Teams | Prof. Helmut Mischo | Prof. Jürgen Brune | Somp Annual Meeting June 2017 |

Trainer / Supervisor Screen

Player Screen: First Person Actor Mode

Computer Simulation Programms in Mine Rescue Education and Training, on the Example of Student Mine Rescue Teams | Prof. Helmut Mischo | Prof. Jürgen Brune | Somp Annual Meeting June 2017 |

Computer Simulation Programms in Mine Rescue Education and Training, on the Example of Student Mine Rescue Teams | Prof. Helmut Mischo | Prof. Jürgen Brune | Somp Annual Meeting June 2017 |

Animated Mine Layout

Moving Equipment

Animated Mine Layout

Moving Equipment

- Positive impact of mine rescue simulators
- Positive feedback from professional mine rescue teams
- The simulator software is being updated for flash scans from flying drones
- The simulator software is being updated for personal VR headsets
- Improvement towards augmented reality is at an early project stage.
- Model for other training simulators (fire fighters, ambulances, hospital emergency rooms and ICUs).

Thank you for your attention

Glück Auf!

